JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR

1993, 60, 439-447 NUMBER 2 (SEPTEMBER)

THE CONVENTIONAL WISDOM OF BEHAVIOR ANALYSIS
J. E. R. STADDON

DUKE UNIVERSITY

To those outside the field of behavior anal-
ysis, its philosophical assumptions and the
strictures they place on experiment and theory
often seem narrow and doctrinaire. To
behaviorists, experimental work outside often
seems equally constrained, compressing the rich
and sometimes idiosyncratic behavior of in-
dividual subjects into impoverished statistical
summaries that filter out anything of real in-
terest. Theory by nonbehaviorists—cognitive
theory, for example—usually appears to be-
haviorists to be vague or excessively elaborate,
often full of mentalistic concepts and only
weakly linked to behavior and the subject’s
actual experience. I can sympathize with both
positions. But as someone closer to the behav-
iorist camp, I am more alarmed by legitimate
criticisms of the experimental analysis of be-
havior than by the weaknesses of its compet-
itors.

Marc Branch’s editorial in the January 1992
issue of the Journal of the Experimental Analysis
of Behavior (JEAB) provides an excellent focus
for some of these concerns because it is a brief
and elegant presentation of the conventional
wisdom (J. K. Galbraith’s felicitous phrase) of
the experimental analysis of behavior. Branch
summarizes the standard practice of radical
behaviorists, making points most would accept
without question. Yet I will argue that many
of these points, either on their face or as they
are usually understood, are far from self-evi-
dent. One or two are highly debatable. I here
take up four of these points.

The following passage highlights the first
two:

“Environment-based” theorizing, developed in
psychology expansively by Skinner . . . but hav-
ing its roots much earlier (cf. Darwin, 1872/
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1962; Mach, 1883/1960 ...), may be con-
trasted with “organism-based” interpreta-
tions. . . . A good analogy is to Newtonian me-
chanics.... I hope JEAB will continue to
emphasize environment-based explanation, not
because it is necessarily “right” but because it
is an approach with advantages worth explor-
ing. . .. (Branch, 1992, p. 1)

Let’s look at two implications of this passage,
and the paragraph from which it is taken: (a)
that “environment-based” theorizing is dis-
tinctive of Darwin and sanctioned by Mach,
and (b) that Newtonian mechanics is an ap-
propriate model for theorizing about behavior.

Precedents for Environment-Based Theorizing

Darwin dealt primarily with environmental
determinants only because behavior was not
his primary object of study. Even in his work
on phylogeny, however, he was careful to dis-
tinguish between present and past environ-
ments—a distinction often blurred in the usual
term history: “For natural selection acts by
either now adapting the varying parts of each
being to its organic and inorganic conditions
of life; or by having adapted them during past
periods of time ... (Darwin, 1872/1951, p.
217, my emphasis). In the experimental anal-
ysis of behavior, history almost invariably re-
fers only to present, or recent, environments—
not to events in the remote past.

When Darwin did deal with behavior, his
theorizing was more “organism based” than
might be supposed. For example, he discusses
the behavior of ants carrying their cocoons away
from the nest in the following way:

The ants carrying the cocoons did not appear
to be emigrating. . . . But when I looked closely
I found that all the cocoons were empty cases. . . .
Now here I think we have one instinct in contest
with another and mistaken one. The first in-
stinct being to carry the empty cocoons out of
the nest. . . . And then came in the contest with
the other very powerful instinct of preserving
and carrying their cocoons as long as possible;
and this they could not help doing although the
cocoons were empty. According as the one or
other instinct was the stronger in each individ-
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ual ant, so did it carry the empty cocoon to a
greater or less distance. (Darwin, 1891, p. 370)

This informal account could be made precise
by defining the two competing action patterns:
carrying the cocoons out of the nest and holding
on to the cocoons as long as possible. Given
hypotheses about the effects of various manip-
ulations on the relative strengths of these two
“instincts,” as Darwin calls them, predictions
about the distance the cocoons should be car-
ried could be made and tested. A theory of this
sort surely qualifies as organism based. Yet
even though it gives us no clue as the prove-
nance of the “instincts,” it seems to me a per-
fectly respectable scientific procedure. The
point is that even Darwin was not averse to
postulating entities that are not directly ob-
servable, if a puzzling phenomenon (“Why do
the ants take the cocoons so far from the nest?”’)
is thereby made more comprehensible.

Branch’s brief reference to physicist Ernst
Mach is an interesting example of Mach’s stat-
ure in experimental psychology. Mach’s influ-
ence has been largely indirect, through the
translations and interpretationsof S. S. Stevens
(e.g., 1951), E. G. Boring (e.g., 1950), and
their students in experimental psychology, and
in the experimental analysis of behavior
through Mach’s influence on Skinner during
his graduate days at Harvard (cf. Marr, 1985;
Smith, 1986). Mach’s prestige in psychology
is high, and his views (as seen through the
interpretations of Boring, Skinner, and others)
are rarely questioned.

In physics Mach’s brilliance is universally
acknowledged. But his philosophy of science
(which is of course the main import from his
work to psychology) is not so widely admired.
For example, Einstein commented:

Mach’s weakness, as I see it, lies in the fact
that he believed more or less strongly that sci-
ence consists merely of putting experimental
results in order; that is, he did not recognize
the free constructive element. ... He thought
that somehow theories arise by means of dis-
covery and not by means of invention. (“Ein-
stein,” 1991, p. 35)

Einstein’s point is that vulgar Baconianism is
wrong: Not all theories can be arrived at sim-
ply from orderly arrangements of data.! For

1 Bacon in fact got it right. He never actually argued
that science is nothing but orderly fact gathering. And of
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every Mendeleev and his period table (a good
inductive theory) there is a Faraday, a Mendel,
or a Kékulé who arrives at field theory, genes,
or the benzene ring by a leap of the imagi-
nation.? As any science matures and orderly
data (inductively gathered) begin to accumu-
late, the creative element—the ability to invent
correct theories that are not obvious from any
likely arrangement of data—becomes essential
to further progress. Unfortunately, the un-
critical importation into experimental psy-
chology, and particularly into behavior anal-
ysis, of Mach’s proinductive prejudice (and
Skinner’s antitheoretical one) has stunted the
development of theory in our area and fostered
unnecessary antagonism between behaviorism
and approaches that are more catholic (per-
haps too catholic!) in their theoretical explo-
rations.

Newtonian Mechanics

Is Newtonian mechanics an appropriate
model for behavior theory? Its attractions are
obvious. It deals only with observables like
mass, length, time, and higher derivatives of
these. We like to think that measures like re-
sponse and reinforcement rates share this kind
of rigor. But the problem with Newtonian me-
chanics as a model for behavior theory is that
it is entirely ahistorical. Given the initial con-
ditions of the system (and in Newtonian phys-
ics these are all directly observable quantities),
the system’s future behavior (reactions to new
forces, etc.) can be predicted. Given the same
initial conditions, the future behavior must be
the same.

The problem for behavior is that the same
set of observables—response rates, prefer-
ences, or whatever—at one time (¢,) denote a
different system state than an identical set at
another time (¢,). How do we know that the
system state is different? Because the same set
of experimental manipulations (extinction, for
example) may produce different results (e.g.,
greater or less resistance to extinction) if ap-

course Mach and Skinner felt little need for theory at all.
(Skinner’s book, 1969, Contingencies of Reinforcement, is
subtitled 4 Theoretical Analysis, but the “theory” is far
from the kind of formal system favored by other learning
theorists.)

21 use the term imagination here not to connote some
mysterious or inexplicable process, but simply to note that
these discoveries did not follow in any obvious or inevitable
way from the data they were used to explain.
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plied at ¢, than at ¢,. The point is that the
future behavior of a historical system cannot
be predicted from observables alone. Simple
Newtonian mechanics is not an appropriate
model for historical systems and therefore
should not provide a model for behavior the-
ory.

One objection to this conclusion is to point
to examples of static, empirical laws, like We-
ber’s law or the matching law, that are not
historical. But, the animal that matches today
is nevertheless not the same animal that
matched last week, and any science that aspires
to understand how matching comes about must
take historical dependence into account. Un-
less we are content to remain forever at the
level of static principles, and thus abandon any
hope of understanding the process of learning,
something beyond the Newtonian model must
be found. More on choice in a moment.

A second objection is more technical. It con-
sists in redefining initial conditions in such a
way as to take in a substantial chunk of the
system’s past history. It is a valid objection, in
the sense that given a known deterministic sys-
tem, and given a sufficient set of historical
observations, it is possible to define the current
state of the system in such a way as to fulfill
the Newtonian property that future behavior
can be predicted perfectly. But this objection
simply makes my final point that the state of
a system and its history are transforms of one
another. More on this point also in the final
section.

There is one other point I want to discuss
before getting to the assumed contradiction
between ‘“environment-based” and “organ-
ism-based” accounts of behavior: the relation
between language and theory in technical de-
scriptions of behavior.

Language

Branch (1992) writes, “A calculus based in
mathematics has been useful in science partly
because of its lack of ambiguity. A calculus
based in verbal behavior also should be as un-
ambiguous as possible” (p. 2). Mathematical
manipulations are indeed unambiguous, but
this is not the main reason mathematics is so
useful in science. Mathematics has been useful
not so much because it is precise as because it
is the language of theory. Even the most ele-
mentary mathematical theory (the Newtonian
derivation of the period of a pendulum from
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its length, for example) would be essentially
impossible to express in words (cf. Staddon,
1984). Mathematics is essential not so much
because it is precise as because it permits the
derivation of predictions that would be im-
possible to arrive at through verbal arguments
alone.

Moreover, mathematical theory is precise
only in its manipulations of symbols. The
meaning of those symbols, the measurements
necessary to assign values to them, rest on the
verbal descriptions. Fortunately, the theory it-
self constrains and guides the definitions of the
terms that enter onto it. The terms in the equa-
tions are operationally defined, but the defi-
nition is often implied by the theory. This con-
straint is important because we can define
things in any way we please. Without an im-
plicit or explicit theory, there is no reason to
prefer one operationally defined term to an-
other. (Not all technical terms are theoretical,
of course. The definitions of structures and
procedures are simply descriptive and arouse
no controversy. The problem is terms with
theoretical overtones.)

Consider force, for example. Newtonian law
says that ' = ma, which suggests that we define
unit force as that which will accelerate one
unit of mass one unit of acceleration. But if
the law of nature were F = muva, where v =
volume, this definition of force would be use-
less, because it would correspond to different
physical quantities for different volumes. The
proper definition would have to include vol-
ume. The point is that the law specifies the
verbal definition, not the reverse. Hence, if we
do not know the law, we have no business being
rigid about verbal definitions! Insisting on a term
before we have an accepted theory is putting
the cart before the horse.?

The problem of defining concepts in advance
of theory is well known in the natural sciences.
Peter Medawar quotes Herbert Spencer, who
wrote as follows on the limited virtues of pre-
cision when fundamental knowledge is lack-
ing:

3 Sometimes the appropriate definition is obvious from
“orderly functional relations” (e.g., between weight and
imparted acceleration). But the history of physical science
shows that the development of a formal theory is usually
necessary before definitions attain universal acceptance.
Acceptable definitions rarely rise from empirical regular-
ities alone.
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A preliminary conception, indefinite but com-
prehensive, is needful as an introduction to a
definite conception. A complex idea is not com-
municable directly, by giving one after another
its component parts in their finished forms; since
if no outline pre-exists in the mind of the re-
cipient these component parts will not be rightly
combined. Much labour has to be gone through
which would have been saved had the general
notion, however cloudy, been conveyed before
the distinct and detailed delineation was com-
menced. (Medawar, 1967, p. 43)

Many other philosophers of science have
made similar points. Mach enjoined against
formulations involving “greater precision than
fits the needs of the moment.” Even Skinner,
in later life so concerned with correct behav-
ioral language, in early days warned against
making “a fetish of exactitude” (both these
examples from Smith, 1986, p. 270). See also
philosopher of biology David Hull’s (1988)
illuminating discussion of “weasel words” in
science. But the obsession with premature pre-
cision, a legacy of the mistaken positivism of
P. W. Bridgman, still bedevils parts of psy-
chology—the experimental analysis of behav-
ior especially.*

This is not to excuse vagueness, of course.
People should be precise about the words they
use. But there is absolutely no reason to be
compulsive about the particular words in areas
in which understanding is still imperfect, so
long as we are clear what is intended. For
example, /EAB used to insist on the word re-
inforcement rather than reward, or even food.
But even now we cannot be certain that all
the phenomena that fit the conventional defi-
nition of reinforcement (response-rate increase
caused by contingent reinforcer presentation)
in fact belong together, because we still have
no consensus on the underlying process (or
processes). Hence, to insist on the word rein-
Jforcement as opposed to reward or simply food

* This is not the place for lengthy examples, but the
preoccupation with definition in the absence of theory
begins in the experimental analysis of behavior with Skin-
ner’s (1935) paper on the operation analysis of psycho-
logical terms. More recent examples include Logan and
Ferraro’s (1978) positivistic text, various attempts to codify
psychological terms (e.g., Verplanck, 1957, and unpub-
lished) or experiments (Logan, unpublished), and the sev-
eral sections on “vocabulary” in Catania’s (1984) popular
text. See also Catania (1989) for a discussion of the role
of language in the experimental analysis of behavior.
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delivery is to imply greater precision than the
state of knowledge warrants. On the other
hand, most /EAB readers are alert to the im-
proper connotations of the vernacular word
reward, so that few will read into it anything
more than the delivery of food to a hungry
animal.

The kind of “behavioristic correctness” that
is represented by insistence on particular terms
(rather than simply on clarity) can easily be-
come scientifically counterproductive. It has
the beneficial effect of forcing novices to think
about the words they use. But it has the inverse
defect of allowing experts to write without
thinking. No doubt the possession of a shared
(and preferably esoteric) vocabulary enhances
group cohesion—the concluding sentence,
“May your reading be consequential,” of Ca-
tania’s (1991) recent editorial conveys some-
thing of this cozy feeling. But a technical vo-
cabulary that is not firmly grounded in theory
or descriptive utility also limits speculation,
alienates outsiders, and marginalizes the field.

Enuvironment-Based Versus Organism-Based
Explanations

This is the kernel of Branch’s editorial, and
the main point on which behaviorists and cog-
nitivists differ. Yet the opposition between or-
ganism-based and environment-based theories
is only a difference of emphasis, as I will try
to show. The easiest way to do this is by ex-
ample.

The example is taken from the work of Der-
ick Davis in my laboratory on choice between
random-ratio schedules (the so-called “two-
armed bandit” problem). The essentials of the
situation are that hungry pigeons choose be-
tween two response keys that deliver food re-
inforcement according to the probabilistic
schedules. Each day, the probability is one in
eight that a peck to one of the two keys will
produce food. The “hot” key varies from day
to day, as specified by the experimenter.

The upper plot in Figure 1 shows the kind
of data we get (Davis, 1991). The solid line
shows percentage “correct” (i.e., responses to
that day’s S+) for a single pigeon each day.
The dashed line shows learning rate, param-
eter a, computed as described in the legend.
Low values of parameter a correspond to rapid
learning. These data show three effects of re-
versal learning: First, there was improvement
in reversal performance across successive daily
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Fig. 1. Top: the entire course of a discrimination-reversal experiment with a single pigeon. The solid line shows
the proportion of responses each day on the key that currently produced food, when those conditions were alternated
every day, every 2 days, or every 4 days, as shown by the staggered letters at the top: L = only left responses reinforced;
R = only right responses reinforced (from Davis, 1991). The dashed line shows the rate of learning from Day N to
Day N + 1, computed from the formula a = [S(N + 1) — X(N + 1)]/[S(N) — X(N + 1)], where S is the proportion
of right responses [=R/(R + L)), and the reinforcement asymptote X = 0, for left reinforcement and 1 for right. This
formula is derived from the linear integrator model for reversal learning (Davis & Staddon, 1990). Bottom: simulation
of these data by the cumulative effects model with initial conditions 1,000, 2,000. See Davis et al. (1993) for more
details.
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reversals. This is shown both by daily im-
provement in percentage of correct responses
(solid line) and by the increased learning rate
(reduced value of parameter a) across the series
of daily reversals (single alternation) in the left
half of the top graph. Second, there was a
change in learning rate (parameter a) as a
function of frequency of reversal: a was lowest
in daily reversal and highest when reversal was
every 4 days. Third, there was a change in
learning rate within and between blocks in the
2- and 4-day reversal conditions: The com-
puted a value increased within each block and
then decreased between blocks.

What would constitute an explanation for
these results? At one time, improvement in
successive reversals was attributed to the de-
velopment of a “reversal learning set.” We
now know that this is not much of an expla-
nation. Branch (personal communication) has
suggested, tongue-in-cheek, that an “organ-
ism-based theorist might propose a ‘behavioral
alternation device’ (BAD!)”’ that has the re-
quired properties. Properly chosen, such a
BAD might look like an explanation of the
data I have described and might even suggest
predictions about future experiments. But the
provenance of the BAD, its origin in pigeon
genes or in the training procedure, would nec-
essarily not be part of the theory. I would be
reluctant to rule out such an account com-
pletely—any model that can predict power-
fully deserves to be taken seriously (cf. Staddon
& Bueno, 1991)—but in the abstract this the-
oretical strategy looks unpromising.

What is the alternative? At least one be-
havior analyst has suggested that on daily re-
versals the pigeon learns to use the initial re-
inforcement each day as a discriminative
stimulus for choice the rest of the day. There
is some support for this idea (Williams, 1976),
but its predictive power is limited and it pro-
vides no obvious explanation for the differ-
ences between single, double, and quadruple
alternation. This account also shares at least
one unfortunate property with the BAD: It
provides no principled basis for identifying
what will be the important discriminative
stimulus. Why choose the preceding reinforced
response? After all, the animal could do even
better on daily alternation if it used the identity
of S— on Day N as a cue for S+ on Day N
+ 1, but pigeons never do so. The theory is
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silent on why the animal selects the less ef-
fective SP over a more effective one. Like BAD,
this is a theory of “what is learned,” not of
how it is learned.

Cumulative effects (CE) model. Here is an
alternative that I offer, despite its imperfec-
tions, because it illustrates the arbitrariness of
the dichotomy between environment- and or-
ganism-based theories. My colleagues and I
(Davis, Staddon, Machado, & Palmer, 1993)
have proposed the following process as an ex-
planation for these reversal-learning data. We
suggest that the pigeons choose response by
response which key to peck on the basis of a
quantity we call V: The key with highest V' is
the one pecked. V is nothing but reinforcement
probability, computed in a slightly novel way.
For each key, V= (R + R,)/(N + N,), where
R is the total number of reinforcements and
N the total number of responses since the be-
ginning of the experiment. R, and N, are simply
initial conditions: the values for R and N at
the beginning of the experiment. There is a V'
value for each choice, and the choice with the
highest current V value is always the one cho-
sen; that is, the process, which we call the
cumulative effects (CE) model, is a version of
momentary maximizing (Shimp, 1966).

If one simulates this process, it turns out to
provide a pretty good facsimile for the data in
the top panel of Figure 1. That is, it shows
improvement in percentage correct across suc-
cessive reversals, plus the other effects of dou-
ble and quadruple alternation that I have de-
scribed. It also explains a number of other
properties of behavior in situations like this
(matching, for example). A typical simulation
is shown in the bottom plot in Figure 1.

Now the question: Is this an organism-based
or an environment-based explanation? My an-
swer is “both, depending on how you describe
it.” Tt is organism based if you focus on the
fact that the behavior of the (model) organism
depends on an internal state defined by four
variables (in a two-choice situation): the values
of R + R, and N + N, for each choice (note
that these values cannot be estimated from sin-
gle-session average data). But it is equally an
environment-based explanation if you focus on
the fact that these state variables can be com-
puted from the animal’s past history, although
the fact that the initial conditions must be de-
rived indirectly from the data means that the
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state even of this very simple model is not
isomorphic with directly measurable quanti-
ties.

Moreover, the model ‘“state” here is both
more and less than the organism’s (model’s)
past history. It is more than past history be-
cause any given organism has only one history,
but the model summarizes the effects of the
infinite set of past histories that all end up
with the same four-place vector of R and N
values. In other words, the model tells us what
other experiences the organism might have had
that would have left it the same in terms of
all future behavior. This is the idea of equiv-
alent history, to which I will return in a mo-
ment.

The model state is also more than a given
history in the sense that it includes initial con-
ditions, which are not themselves observable
or directly measurable, but must be estimated
from data. But the model is less than history
in the sense that once we know the model, we
can test it at any time so as to estimate the
values of the four state variables. Given the
model, plus the results of a test, we can there-
fore estimate the state—hence the model’s fu-
ture behavior—without knowing the details of
its past history. This is a direct, practical ben-
efit for an accurate model over bare knowledge
of historical data.

Despite the arguments for the value of the
“state” idea, the CE model would probably be
regarded as environment based by most people,
because its state is so closely linked to observ-
able behavior. But this model is only a special
case of a much more complex class of models
of the same general type. Let me briefly de-
scribe a slightly more general version that most
people would probably term organism based.

One perfectly reasonable objection to the CE
model is that because the V values simply re-
flect totals, the influence of a reinforcement
just received is no greater than the influence
of a remote reinforcement, received yesterday,
or last week. Even though the model’s predic-
tions are pretty good, this assumption seems
implausible. The assumption can be modified
in various ways. One is to use some kind of
temporal weighting, such as Killeen’s (1981)
exponentially weighted moving average. This
keeps us still pretty close to the raw data, but
in our simulations it doesn’t work very well.

Cumulative trace (CT) model. Another pos-
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sibility is as follows. Recall that the original
model defines a quantity V that is simply a
ratio of cumulated responses and reinforcers
for each choice. Thus, the numerator of this
ratioisr, + r, + ... + ry, where r denotes a
reinforcer magnitude and the subscripts are
just the first, second, . . . Nth reinforcers. Now,
suppose we accept that older reinforcers have
diminishing effects. This suggests that the con-
tribution of each reinforcer should decrease
with the time elapsed since it was delivered.
Thus, the numerator should be something like
rft — ) + rpf(t — b)) + ...+ rfE — tw),
where ¢; is the absolute time of occurrence of
the ith reinforcer, ¢ is the current time, f de-
notes a decreasing function of age (i.e., ¢ — ;)
such as e~*¢ ~ % and r; is just the reinforcer
magnitude. A similar function is used for the
responses in the denominator. With this
change, the longer ago a response or a rein-
forcement occurred, the smaller its contribu-
tion to the total.

I don’t know whether this model is in fact
better than the CE model. We do know that
it can mimic time-based spontaneous recovery,
which is not explainable by the response-level
CE model. But there are other, computation-
ally simpler, models that seem worth exploring
first. The virtue of the CT model in the present
context is that its family resemblance to the
CE model permits the following argument.

This model is simply a generalization of our
original CE model. In the original, we just
picked a particularly simple form for f, namely
ft = t) = 1, that is, a constant value for f
independent of ¢ — ¢;. Nevertheless, despite the
added computational complexity of the second
model, the two models are of exactly the same
form. Yet the second is in fact a memory trace
model, because f(¢ — ¢;) represents a declining
influence of the ith reinforcer with time. More-
over, the CT model adds at least one param-
eter, representing the rate of decay of the
“trace” (two parameters, if we assume that the
reinforcement and response traces decay at dif-
ferent rates). Because of these new parameters,
it is much more difficult to estimate the state
of the CT model from behavioral data. The
CT model shares some properties with Hul-
lian trace theory, and most people would there-
fore consider it an organism-based model. Yet,
I would argue, despite the much greater com-
putational complexity of the CT model, that
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it is no less environment based, and no more
organism based, than the CE model.

The point is that the environment-based
versus organism-based distinction is often im-
possible to make in practice.

States and equivalent histories. The same point
can be made more abstractly. There cannot be
any real opposition between environment- and
organism-based explanations, for a very fun-
damental reason: The “internal state” of any
black-box system cannot be known except
through knowing its history. This is a matter
of logic, not of data or definition. Talking about
internal states is thus just a shorthand way of
talking about sets of equivalent (behavioral)
histories—equivalent in the sense that the fu-
ture behavior of the system is the same follow-
ing any of the histories in the set (cf. Minsky,
1967; see also Hineline, 1990; Staddon, 1973).°
Thus, for the CE model, all histories that end
up with the same totals for R + Ry and N +
N, are equivalent, in the sense that the future
behavior of the model will be indistinguish-
able.

Notice that because the state of the CE model
is not identifiable from session-average data,
the model is not subject to the Newtonian con-
straint I discussed earlier: It shows effects of
past history that may not be visible in currently
measured behavior. Similar session-average
data early and late in training do not, there-
fore, imply similar behavior when conditions
are changed.

The logical equivalence between a state and
a set of equivalent histories means that there
cannot be any real conflict between organism-
and environment-based explanations for be-
havior. Any environment-based theory can be
rephrased as an organism-based theory, al-
though the converse is not true. A valid crit-
icism of some cognitive theories is that states
are postulated without any clear specification
of the historical data necessary to identify them.
This asymmetry may lead some to argue for
the intrinsic superiority of the environment-
based approach, but there are counterargu-
ments I will not go into here. For the CE
model, the definition of the model in environ-
ment-based terms is just about as simple as its

* A Skinnerian reader might want to consider this def-
inition of state as a class of histories as merely an extension
of Skinner’s (1935) class-based definitions of stimulus and
response (see also Staddon, 1967).
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definition in terms of internal state. But for
the CT model, the environment-based defi-
nition is probably easier to understand, even
though most people would probably categorize
the model as organism based.

If these two types of models are intertrans-
latable, as I have argued, what then is the basis
for the vigorous disagreement between behav-
iorists and cognitivists? This question takes us
into the realm of conjecture and goes well be-
yond what can be treated in a short paper.
Evidently most cognitivists prefer theory to
data, and give some priority to mentalism and
intuition (compared to induction from data) in
the invention of theories. Behaviorists clearly
expect much more in the way of empirical
support for any theoretical speculations, and
give little weight to the intuitive plausibility
of a hypothesis. Moreover, many behaviorists
simply do not accept that the ultimate objective
of psychological science is theoretical: “behav-
ior in its own right” is still a potent talisman.
Nevertheless, the logic is as clear for behav-
iorists as for cognitivists. If we disavow an
interest in either physiology or mind reading,
then we cannot know anything about internal
states except through the study of particular
histories. And if the finite effects of an infinite
set of possible histories are to be reduced to
some kind of order, groupings of histories that
are in effect states are unavoidable. Behavior-
ists would therefore do well to acknowledge
the utility of internal, albeit historically de-
fined, states and judge a theory on its explan-
atory merits rather than on whether or not it
is “environment based.”

Conclusion

It is time to move beyond an essentially
atheoretical and ahistorical behaviorism to a
theoretical and historical behaviorism that rec-
ognizes the obvious: Histories do not act in a
vacuum; the organism is not simply the passive
confluence of forces, like a Ouija® board
pushed by intoxicated seancers. Skinner (1972),
despite his protestations, was not just the empty
locus at which a poem “happened” but a unique
living being changed by his experiences and
operating upon them in creative ways. His-
tories change the organism, and experimentally
based state models are the only way we have
to understand the nature of the changes and
the nature of the mechanism that allows them
to occur.
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